Using AI for SQL Server Development

*THIS IS A PRIVATE ONLY COURSE - CONTACT FOR PRICING* This 4-Part course introduces developers and database administrators to the integration of artificial intelligence (AI) techniques with SQL Server development. Participants will learn how to harness AI-driven tools to enhance SQL performance, automate processes, develop advanced data analytics, and implement predictive modeling directly within the SQL Server environment. Each Part includes hands-on labs to reinforce learning.

Retail Price: $0.00

Next Date: Request Date

Course Days: 4


Request a Date

Request Custom Course


Learning Objectives: 

By the end of the course, participants will be able to: 

  1. Understand the fundamentals of AI and its application within SQL Server. 
  1. Set up SQL Server for AI development using Machine Learning Services and external AI APIs. 
  1. Use AI to optimize SQL Server performance and automate data management tasks. 
  1. Perform data preparation and feature engineering directly in SQL Server for AI models. 
  1. Build, deploy, and maintain machine learning models within SQL Server. 
  1. Integrate external AI services for NLP, image processing, and anomaly detection. 
  1. Monitor and retrain models to manage performance over time. 

 

Prerequisites: 

  • Technical Skills: 
  • Understanding database design and relational data concepts. 

Part 1: Introduction to AI in SQL Server Development 

Module 1: Understanding AI Fundamentals in SQL Context 

  1. Introduction to AI and Machine Learning 
  • Basics of AI, Machine Learning (ML), and Data Science 
  • Relevance of AI for SQL Server development 
  1. Integrating AI with SQL Server 
  • Overview of SQL Server Machine Learning Services 
  • Overview of Python and R Integration 
  • AI-driven SQL development tools (e.g., Azure AI, OpenAI API) 
  1. Use Cases for AI in SQL Server 
  • Predictive maintenance, anomaly detection, recommendation engines, and more 
  • Examples of organizations using AI with SQL Server 

Module 2: Environment Setup and Basics 

  1. Setting Up SQL Server with Machine Learning Services 
  • Installing and configuring Python/R in SQL Server 
  • Installing required libraries and packages for ML and AI 
  1. Introduction to Azure AI Services 
  • Overview of Azure Cognitive Services and integration with SQL Server 
  • Azure Machine Learning Studio basics 
  1. Lab 1: Configuring SQL Server for AI Development 
  • Hands-on installation and setup of Machine Learning Services 
  • Running basic scripts using Python/R in SQL Server 

 

 

Part 2: Data Preparation and Feature Engineering for AI Models 

Module 1: Data Collection and Cleaning 

  1. Data Collection from SQL Server for AI Models 
  • Extracting and preparing data from SQL Server 
  • Data warehousing and ETL best practices 
  1. Data Cleaning Techniques Using AI 
  • Data quality analysis 
  • AI-driven data cleaning and handling missing values 
  1. Feature Engineering in SQL Server 
  • Identifying key features from raw data 
  • Encoding, normalizing, and transforming data for AI models 

Module 2: Introduction to Model Development in SQL Server 

  1. Introduction to Machine Learning Models with SQL Server 
  • Overview of model types: Regression, Classification, Clustering 
  • Selecting the right model for SQL Server data 
  1. Lab 2: Building a Simple Model in SQL Server 
  • Using Python/R to create and train a model on SQL Server data 
  • Hands-on exercise with a linear regression model for a basic prediction 

 

Part 3: Advanced AI Techniques for SQL Server 

Module 1: Using AI for Performance Optimization 

  1. Query Optimization with AI 
  • AI-driven query analysis and performance improvement 
  • Leveraging AI for indexing and partitioning recommendations 
  1. Automating Data Insights and Anomaly Detection 
  • Using ML models for anomaly detection in SQL data 
  • Building alerts for unusual data patterns 
  1. Implementing Recommendation Systems in SQL Server 
  • Recommender algorithms using SQL and AI 
  • Case studies and applications of recommendation systems 

Module 2: Integrating NLP and Image Processing 

  1. Natural Language Processing (NLP) in SQL Server 
  • Text mining and sentiment analysis in SQL Server 
  • Building basic NLP models for text analysis 
  1. Integrating Image Processing with SQL Server 
  • Introduction to Azure Cognitive Services for image analysis 
  • Examples of integrating image data with SQL queries 
  1. Lab 3: Building a Sentiment Analysis Model in SQL Server 
  • Using NLP techniques on SQL data (e.g., customer reviews) 
  • Deploying a basic text analysis model in SQL Server 

 

Part 4: Building, Deploying, and Monitoring AI Models in SQL Server 

Module 1: Model Deployment and Integration 

  1. Deploying AI Models on SQL Server 
  • Model management and deployment in SQL Server 
  • Real-time model scoring and embedding predictions in SQL queries 
  1. Integration with External AI APIs 
  • Calling external AI APIs from SQL Server 
  • Examples using OpenAI, Azure AI, and other APIs for complex AI tasks 
  1. Lab 4: Model Deployment in SQL Server 
  • Deploying a predictive model for real-time scoring 
  • Hands-on experience embedding predictions in SQL queries 

Module 2: Model Monitoring, Maintenance, and Course Review 

  1. Model Monitoring and Performance Tuning 
  • Monitoring deployed models, retraining, and managing model drift 
  • Techniques for optimizing AI model performance on SQL Server 
  1. Troubleshooting and Best Practices 
  • Common issues in AI and SQL integration 
  • Best practices for secure, efficient AI in SQL Server 

 



Sorry! It looks like we haven’t updated our dates for the class you selected yet. There’s a quick way to find out. Contact us at 502.265.3057 or email info@training4it.com


Request a Date