Hortonworks HDP Analyst Data Science
This course Provides instruction on the processes and practice of data science, including machine learning and natural language processing. Included are: tools and programming languages (Python, IPython, Mahout, Pig, NumPy, pandas, SciPy, Scikitlearn), the Natural Language Toolkit (NLTK), and Spark MLlib.
About This Course
This course Provides instruction on the processes and practice of data science, including machine learning and natural language processing. Included are: tools and programming languages (Python, IPython, Mahout, Pig, NumPy, pandas, SciPy, Scikitlearn), the Natural Language Toolkit (NLTK), and Spark MLlib.
Audience Profile
Primary audience for this course are:
- Architects
- software developers
- analysts and data scientists who need to apply data science and machine learning on Hadoop.
Prerequisites
Students must have experience with at least one programming or scripting language, knowledge in statistics and/or mathematics,
and a basic understanding of big data and Hadoop principles. Students new to Hadoop are encouraged to attend the HDP Overview: Apache Hadoop Essentials course.
At Course Completion
Upon course completion, students will be able to:
- Describe the Hadoop and YARN architecture
- Describe supervised and unsupervised learning differences
- Use Mahout to run a machine learning algorithm on Hadoop
- Describe the data science life cycle
- Use Pig to transform and prepare data on Hadoop
- Write a Python script
- Describe options for running Python code on a Hadoop cluster
- Write a Pig User-Defined Function in Python
- Use Pig streaming on Hadoop with a Python script
- Use machine learning algorithms
- Describe use cases for Natural Language Processing (NLP)
- Use the Natural Language Toolkit (NLTK)
- Describe the components of a Spark application
- Write a Spark application in Python
- Run machine learning algorithms using Spark MLlib
- Take data science into production
Course Outline
Format
50% Lecture/Discussion
50% Hands-on Labs
Hands-On Labs
- Lab: Setting Up a Development Environment
- Demo: Block Storage
- Lab: Using HDFS Commands
- Demo: MapReduce
- Lab: Using Apache Mahout for Machine Learning
- Demo: Apache Pig
- Lab: Getting Started with Apache Pig
- Lab: Exploring Data with Pig
- Lab: Using the IPython Notebook
- Demo: The NumPy Package
- Demo: The pandas Library
- Lab: Data Analysis with Python
- Lab: Interpolating Data Points
- Lab: Defining a Pig UDF in Python
- Lab: Streaming Python with Pig
- Demo: Classification with Scikit-Learn
- Lab: Computing K-Nearest Neighbor
- Lab: Generating a K-Means Clustering
- Lab: POS Tagging Using a Decision Tree
- Lab: Using NLTK for Natural Language Processing
- Lab: Classifying Text using Naive Bayes
- Lab: Using Spark Transformations and Actions
- Lab Using Spark MLlib
- Lab: Creating a Spam Classifier with MLlib
Sorry! It looks like we haven’t updated our dates for the class you selected yet. There’s a quick way to find out. Contact us at 502.265.3057 or email info@training4it.com
Request a Date